Short inverted repeats contribute to localized mutability in human somatic cells
نویسندگان
چکیده
Selected repetitive sequences termed short inverted repeats (SIRs) have the propensity to form secondary DNA structures called hairpins. SIRs comprise palindromic arm sequences separated by short spacer sequences that form the hairpin stem and loop respectively. Here, we show that SIRs confer an increase in localized mutability in breast cancer, which is domain-dependent with the greatest mutability observed within spacer sequences (∼1.35-fold above background). Mutability is influenced by factors that increase the likelihood of formation of hairpins such as loop lengths (of 4-5 bp) and stem lengths (of 7-15 bp). Increased mutability is an intrinsic property of SIRs as evidenced by how almost all mutational processes demonstrate a higher rate of mutagenesis of spacer sequences. We further identified 88 spacer sequences showing enrichment from 1.8- to 90-fold of local mutability distributed across 283 sites in the genome that intriguingly, can be used to inform the biological status of a tumor.
منابع مشابه
Genetic plasticity of V genes under somatic hypermutation: statistical analyses using a new resampling-based methodology.
Evidence for somatic hypermutation of immunoglobulin genes has been observed in all of the species in which immunoglobulins have been found. Previous studies have suggested that codon usage in immunoglobulin variable (V) region genes is such that the sequence-specificity of somatic hypermutation results in greater mutability in complementarity-determining regions of the gene than in the framewo...
متن کاملDistinct P-element excision products in somatic and germline cells of Drosophila melanogaster.
The footprints remaining following somatic P-element excision from the Drosophila white locus were recovered and characterized. Two different types of footprints were observed. Over 75% of the footprints were short, composed of 4 or 7 nucleotides of the P-element inverted terminal repeat, and were similar to those found in a previously described plasmid excision assay. The remaining footprints ...
متن کاملDistinct Mutational Behaviors Differentiate Short Tandem Repeats from Microsatellites in the Human Genome
A tandem repeat's (TR) propensity to mutate increases with repeat number, and can become very pronounced beyond a critical boundary, transforming it into a microsatellite (MS). However, a clear understanding of the mutational behavior of different TR classes and motifs and related mechanisms is lacking, as is a consensus on the existence of a boundary separating short TRs (STRs) from MSs. This ...
متن کاملReplication-Dependent Mechanism of Chromosome Fragility at the Site of Inverted Repeats in Saccharomyces cerevisiae
Genome instability is linked to cancer and many hereditary diseases. Chromosomal aberrations are often associated with repeats that can adopt DNA secondary structures. Studying the mechanism of genome instability caused by unstable motifs will therefore contribute to our understanding of the origin of human pathology. In this study, we investigate the mechanism underlying inverted repeated asso...
متن کاملHairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells.
Chromosomes of many eukaryotic organisms including humans contain a large number of repetitive sequences. Several types of commonly present DNA repeats have the capacity to adopt hairpin and cruciform secondary structures. Inverted repeats, AT- and GC-rich micro- and minisatellites, comprising this class of sequence motifs, are frequently found in chromosomal regions that are prone for gross re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2017